Combinatorics

What is Combinatorics?

- Wide ranging field involving the study of discrete objects

What is Combinatorics?

- Wide ranging field involving the study of discrete objects
- Enumerative Combinatorics
- counting the objects that satisfy certain criteria

Permutations and Combinations

- Permutations
- Number of ways of arranging a list of elements
- Order is important
- Combinations
- Number of ways of selecting k elements from a set
- Order is unimportant

Permutations and Combinations

- Permutations with repetition
- n^{k}
- Permutations without repetition
- $\mathrm{P}(n, k)=\frac{n!}{(n-k)!}$
- Combinations without repetition (Binomial Coefficients)

$$
\mathrm{C}(n, k)=\binom{n}{k}=\frac{\mathrm{P}(n, k)}{k!}=\frac{n!}{k!(n-k)!}
$$

Pascal's Triangle

Row 0
Row 1
$1 \begin{array}{lll}1 & 1\end{array} \quad\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$
Row 2
Row 3
$1 \begin{array}{llll}1 & 3 & 3 & 1\end{array}$
Row 4
14641
Row 5
$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$
Row 6
$\begin{array}{lllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$
$\begin{array}{llllllllll}\text { Row } & 7 & 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1\end{array}$

Combinations with repetition

- Combinations with repetition
- $\left(\binom{n}{k}\right)=\binom{n+k-1}{k}=\frac{(n+k-1)!}{k!(n-1)!}$

Multinomial Coefficients

- Determine the coefficients of the expansion of

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum_{k_{1}, k_{2}, \cdots, k_{m}}\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}}
$$

- The number of ways of placing n objects into m boxes, the $i^{\text {th }}$ one being of size k_{i}
- The number of permutations of a string with length n and m distinct letters and with k_{i} denoting the number of times the $\mathrm{i}^{\text {th }}$ letter appears.

$$
\binom{n}{k_{1}, k_{2}, k_{3}, \ldots, k_{m}}=\frac{n!}{k_{1}!k_{2}!k_{3}!\cdots k_{m}!} \quad \text { Note: } \sum_{i=1}^{m} k_{i}=n
$$

Stirling numbers

- How many ways are there to partition a set of size n into k non-empty subsets?
$\mathrm{S}(n, k)=S_{n}^{(k)}=\left\{\begin{array}{l}n \\ k\end{array}\right\}$
- How do you calculate $S(n, k)$?

Stirling numbers

- Split problem into disjoint sub-problems
- A partition either contains the $\mathrm{n}^{\text {th }}$ element by itself or as part of another set
- When element is alone the number of other partitions is $\mathrm{S}(\mathrm{n}-1, \mathrm{k}-1)$
- When elements is part of another set there are $\mathrm{S}(\mathrm{n}-1, \mathrm{k})$ ways to partition the set without it and k sets to insert it into
- Answer: S(n, k) = S(n-1, k-1) + k.S(n-1, k)

Stirling numbers

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} \text { where }\left\{\begin{array}{l}
n \\
1
\end{array}\right\}=\left\{\begin{array}{l}
n \\
n
\end{array}\right\}=1
$$

Inclusion Exclusion

- If set A has 5 elements and set B has 5 elements how many elements does the union have?

Inclusion Exclusion

Inclusion Exclusion

$5+5=10$

Inclusion Exclusion

Inclusion Exclusion

- $|\mathbf{A} \cup \mathbf{B}|=|\mathbf{A}|+|\mathbf{B}|-|\mathbf{A} \cap \mathbf{B}|$

Inclusion Exclusion

Inclusion Exclusion

Adding the the sizes of each set will give:

$A \cap C$ A B B C But then we are missing one

Inclusion Exclusion

- $|\mathbf{A} \cup \mathbf{B}|=|\mathbf{A}|+|\mathbf{B}|-|\mathbf{A} \cap \mathbf{B}|$
- $|\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}|=|\mathbf{A}|+|\mathbf{B}|+|\mathbf{C}|-|\mathbf{A} \cap \mathbf{B}|-|\mathbf{A} \cap \mathbf{C}|-|\mathbf{B} \cap \mathbf{C}|+|\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}|$

Inclusion Exclusion

- $|\mathbf{A} \cup \mathbf{B}|=|\mathbf{A}|+|\mathbf{B}|-|\mathbf{A} \cap \mathbf{B}|$
- $|\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}|=|\mathbf{A}|+|\mathbf{B}|+|\mathbf{C}|-|\mathbf{A} \cap \mathbf{B}|-|\mathbf{A} \cap \mathbf{C}|-|\mathbf{B} \cap \mathbf{C}|+|\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}|$

$$
\begin{aligned}
\left|\bigcup_{i=1}^{n} A_{i}\right|= & \sum_{i=1}^{n}\left|A_{i}\right| \\
& -\sum_{i, j: 1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{i, j, k: 1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

Inclusion Exclusion

- COCI Contest \#4 Question 5 (Simplified)
- There is an $\mathrm{n} \times \mathrm{m}$ grid with safes at each grid position
- n <= 2000; m <= 1000000000
- There's a guard at bottom left-hand corner (0,0)
- How many safes can he see?
- He can see the ones at (x, y) such that x and y are co-prime

Inclusion Exclusion

For each $\mathrm{i}=1$ to n
Factorise i into prime factors $\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{k}}$
Let M_{j} be the set of multiples of f_{j} less than or equal to m Position (i, x), such that $x \in M_{j}$, can't be seen because i and x necessarily share a factor.
Let $\mathrm{X}=\mathrm{M}_{1} \cup \mathrm{M}_{2} \cup \ldots \cup \mathrm{M}_{\mathrm{k}}$ Note: $\left|\boldsymbol{M}_{\boldsymbol{j}}\right|=\left\lfloor\frac{m}{f_{j}}\right\rfloor$

Therefore X contains all of the positions that can't be seen And $\left|X^{\prime}\right|=m-|X|$ safes can be seen in this column Add this to the total.

Inclusion Exclusion

- Note: inclusion-exclusion principal is slow:
$\mathrm{O}\left(2^{k}\right)$ where k is the number of sets.
- But in many cases it works.
- In this case, there are at most 4 distinct prime factors, so it easily runs in time.
- The maximum number of distinct factors is 4 , because the smallest number with 5 distinct prime factors is the product of the first 5 primes: $2 * 3 * 5 * 7 * 11=2310$ and n can only go up to 2000.

Burnside's lemma

- How many ways are there to colour a ring of 12 objects with 3 colours taking rotations into account?

Burnside's lemma

- How many ways are there to colour a ring of 12 objects with 3 colours taking rotations into account?
- If you ignore rotations it is trivial: 3^{12}

Burnside's lemma

- How do you take equivalent solutions into account?

Burnside's lemma

- Decide what makes solutions equivalent.
- These are the transformation that you can perform on a solution without changing it into another distinct solution.

Burnside's lemma

- Decide what makes solutions equivalent.
- These are the transformation that you can perform on a solution without changing it into another distinct solution.
- In this case they are
- Identity - NB Rotate right 4 Rotate right 8
- Rotate right 1 Rotate right 5 Rotate right 9
- Rotate right 2 Rotate right 6 Rotate right 10
- Rotate right 3 Rotate right 7 Rotate right 11

Burnside's lemma

- Consider each transform
- How many solutions remain unchanged after the transform is applied?
- Sum the results for each transform and divide by the number of transforms.

Burnside's lemma

- Identity
- All solutions remain the same (by definition): 3^{12}
- Rotate right 1

```
A B C D E F G H I J K L
L A B C D E F G H I J K
```

For the solution not to change: A must equal L, B must equal A, etc. Because $A=L$ and $B=A, B=L$, etc. Therefore they are all equal.

Burnside's lemma

- Identity
- All solutions remain the same (by definition): $\boldsymbol{\mu}^{12}$
- Rotate right 1
- Only the solutions with all objects equal remain the same:
3^{1}
- Rotate right 2

Burnside's lemma

- Identity
- All solutions remain the same (by definition): $3^{1 r}$
- Rotate right 1
- Only the solutions with all objects equal remain the same:
3^{1}
- Rotate right 2
- Only the solutions with the same objects in 2 cycles remain the same: Γ^{2}

Burnside's lemma

- Rotate right 3
- Only the solutions with the same objects in 3 cycles remain the same: 3^{3}
- Rotate right 4
- Only the solutions with the same objects in 4 cycles remain the same:
${ }^{\mu}$
- Rotate right 5
- Only the solutions with all objects equal remain the same:
3^{1}

Burnside's lemma

- Rotate right 6
- Only the solutions with the same objects on opposite sides of ring: 3^{6}
- Rotate right $7=$ Rotate left $5=$ Rotate right 5
- Rotate right $8=$ Rotate left $4=$ Rotate right 4
- Rotate right $9=$ Rotate left $3=$ Rotate right 3
- Rotate right $10=$ Rotate left $2=$ Rotate right 2
- Rotate right 11 = Rotate left 1 = Rotate right 1

Burnside's lemma

- Sum up the results and divide

$$
\frac{3^{12}+\varepsilon . r^{1}+2.3^{2}+2.3^{3}+2.3^{4}+3^{6}}{12}
$$

Burnside's lemma

- Sum up the results and divide

$$
\frac{3^{12}+4.3^{1}+2.3^{2}+2.3^{3}+2.3^{4}+3^{6}}{12}=44368
$$

It's that easy: just bear in mind the numbers you sum are not always going to be powers. In fact, you may need to think about each transform separately.

Calculating Combinations

function combination (n, k)

$$
\begin{aligned}
& c=1 \\
& \text { for } i=0 \text { to } k-1 \\
& \quad c=c^{*}(n-i) /(i+1) / / \operatorname{not} *=
\end{aligned}
$$

return c

Calculating Combinations

- Another method is to pre-compute Pascal's triangle and use it as a look-up table for combinations.
- This is useful if many different combinations need to be computed, as long as n does not get too large.

TRICKS

- Dividing by k! to remove permutations
- Splitting problem into 2 disjoint sub-problems
- Distinguished Element - make one element special
- Inclusion-exclusion
- Burnside's lemma
- DP

